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Transverse-Mode Structure of a Phase-Conjugate 
Oscillator Based on Brillouin-Enhanced 

Four-Wave Mixing 
MARK D. SKELDON AND ROBERT W. BOYD 

Abstract-A phase-conjugate oscillator consisting of a phase-conjn- 
gate mirror and a conventional mirror has been constructed. The phase- 
conjugate mirror is based on a Brillouin-enhanced four-wave mixing 
process and produces a conjugate wave with no frequency shift and 
with a reflectivity greater than 100 percent. The beam divergence and 
near field spot size of this oscillator have been measured for various 
cavity lengths and conventional mirror radii of curvature. A theoreti- 
cal analysis of the mode structure of this oscillator has been performed 
assuming a Gaussian reflectivity profile for the phase-conjugate mir- 
ror. The measurements are in good agreement with the predictions of 
this model. 

INTRODUCTION 
NE of the applications of optical phase conjugation 0 is in the construction of phase-conjugate resonators 

consisting of a phase-conjugate mirror (PCM) and a con- 
ventional mirror. A laser that incorporates a phase-con- 
jugate resonator can produce an output beam whose qual- 
ity is unaffected by distortions introduced by the internal 
elements of the laser. The mode structure of a phase-con- 
jugate resonator has been analyzed theoretically in several 
previous studies [ 11-[20] ; however, detailed experimental 
studies of the mode structure have been very limited. In 
this paper, we present the results of our experimental in- 
vestigation of the output beam characteristics of a phase- 
conjugate oscillator for various cavity lengths and radii of 
curvature of the conventional mirror. The PCM used in 
our phase-conjugate oscillator is one based on Brillouin- 
enhanced four-wave mixing and has been discussed pre- 
viously [21], [22]. We find good agreement between our 
measurements of the output beam characteristics and the 
predictions of a theoretical model of the mode character- 
istics of a phase-conjugate oscillator. We have studied 
both cases in which the higher order modes experience 
high loss and hence oscillation is primarily in the lowest 
order mode, and cases in which the presence of higher 
order modes is important. 

THEORY 
We model the phase-conjugate resonator as consisting 

of a PCM with a Gaussian reflectivity profile in the trans- 
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verse direction and a conventional mirror separated from 
the PCM by a distance that we refer to as the cavity length. 
Our treatment is similar to that presented previously by 
Pepper [4] and by Siegman et al. [ 151. The Gaussian re- 
flectivity profile is important in determining the mode 
structure of this type of resonator. In fact, in practice, 
PCM’s often have Gaussian reflectivity profiles because 
they are pumped by laser beams that have Gaussian inten- 
sity profiles. In addition, we assume that the PCM pro- 
duces no frequency shift on reflection and has a total re- 
flectivity greater than 100 percent, thus acting as a gain 
element in the resonator. These assumptions are well sat- 
isfied in our experimental oscillator. 

To determine the allowed mode structure of this phase- 
conjugate resonator, we use the ABCD ray matrix tech- 
nique [23]. We begin by developing the ABCD ray-trans- 
fer matrix that corresponds to reflection from a PCM with 
a Gaussian reflectivity profile. We assume that the field 
incident on the PCM has the form 

where the complex beam parameter qi of the incident beam 
is given by 

1 1 i X  
2 

- 
4; Pi TWi  

and p i  is the radius of curvature and wi is the spot size of 
the incident field with wavelength A. For a given mode, 
knowledge of the complex beam parameter q at any plane, 
in conjunction with the beam propagation laws, uniquely 
determines the beam characteristics for that mode every- 
where in free space. As mentioned above, we assume that 
the amplitude reflectivity p of the PCM varies in the 
transverse direction according to 

- -  

(3)  

where a is the characteristic width of the reflectivity pro- 
file and p0 is the reflectivity on axis. We assume that the 
on-axis reflectivity po is a constant independent of the in- 
cident field intensity (i.e., we ignore saturation effects). 
The field reflected from the PCM will then be given by 
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the complex conjugate of the incident field's complex am- 
plitude (l), multiplied by the reflectivity profile of the 
PCM (3), that is, by 

Here the complex beam parameter qr of the reflected wave 
is given by 

( 5 )  
1 ih 

- -- - ; [$ f $1, 1 

4 r  Pi 

_ -  

that is, by 

(6) 
1 1 ih _ -  
qr q: nu2' 

This last expression relates the complex beam parameters 
of the incident and reflected fields, and hence completely 
describes reflection of a Gaussian beam from a PCM. Note 
that the action of the PCM is twofold: the sign of the 
radius of curvature p is reversed and, because of the 
Gaussian reflectivity profile, the spot size of the beam is 
modified on reflection. The change in sign of p upon re- 
flection is a consequence of the sign convention we have 
used in (l) ,  ( 2 ) ,  and (4); in fact, the actual phase front 
remains unchanged upon reflection from a PCM. The spot 
size, on the other hand, changes discontinuously upon re- 
flection from the PCM, implying that the cavity mode 
consists of two different Gaussian beams, one traveling to 
the right and one traveling to the left. For large values of 
a (a  >> wi), the l /a2 term in (5) can be neglected and 
the left- and right-going beams acquire identical phase 
fronts and beam diameters everywhere. 

For an optical system that can be described by a par- 
axial ABCD ray-transfer matrix and that contains one 
PCM, propagation of a Gaussian beam through the sys- 
tem results in the following relationship between the in- 
cident complex beam parameter qi and the reflected beam 
parameter qr [24]: 

D 
C + ,  

9; 1 
B '  

qr A + ,  
4i 

- _ -  (7)  

Here, complex conjugation of the complex beam param- 
eter on the right-hand side of this equation is required 
since the system includes one reflection from a PCM. 
From (6) and (7), we see that the ABCD matrix that cor- 
responds to reflection from a PCM with a Gaussian re- 
flectivity profile is given by 

With this matrix, we are now able to calculate the com- 
plex beam parameter q that reproduces itself after one 

roundtrip through a phase-conjugate resonator. For ex- 
ample, let us consider the case of a phase-conjugate res- 
onator consisting of a PCM with a Gaussian reflectivity 
profile and a conventional mirror with radius of curvature 
R located a distance L from the PCM. If we begin the 
analysis at the PCM, then the total ABCD matrix for this 
system is given by the matrix product 

I I ih I .  
L R  J 

( 9 )  
The four matrices on the right-hand side correspond from 
right to left to reflection from the PCM, propagation to 
the conventional mirror, reflection from the conventional 
mirror, and propagation back to the PCM. The require- 
ment that the resonator be geometrically stable implies 
that the q parameter must come back to itself (i.e., q1 = 
qr)  after one roundtrip. We must therefore find the solu- 
tion of (7) with qi = qr with the quantities A ,  B ,  C ,  and 
D given by (9). The real and imaginary parts of (7) con- 
stitute two equations in two unknowns: the radius of cur- 
vature p and the spot size w of the beam incident on the 
PCM. We note that if the PCM had an infinite extent in 
the transverse direction (i.e., if a --* a), then the imag- 
inary part of (7) would give no information and there 
would be an infinite number of allowed modes for this 
resonator, each having radius of curvature R but an arbi- 
trary spot size at the conventional mirror. The solution 
for the spot size w,,~, , ,  and radius of curvature P ~ , ~ ~ , , ,  of the 
beam incident on the PCM that reproduces itself after one 
roundtrip is given by 

and 

2L( 1 - ;) 
2L 

1 - -  
R 

Pi ,pcm = 

where g = 1 2Lh/a ( 1 - L/R ) 1 .  After reflection from 
the PCM, the new spot size w,,~~,,, and radius of curvature 
P ~ , ~ , , ,  at the. PCM will be given according to (5) by 

1 + -  1 
- 1 

W:,pcm 4 , p c r n  a2 

and 

Pr,pcm = - P i , p c m  * (1  lb )  

Note that these solutions depend on only four variables: 
the cavity length L ,  the radius of curvature R of the output 
coupler, the wavelength h of the light used, and the width 
of the Gaussian reflectivity profile a. These variables are 
determined by the experimental conditions. Note also that 
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valid solutions are obtained with no restriction on the cav- 
ity length L or the sign of the radius of curvature R of the 
output coupler, unlike for the case of conventional reso- 
nators. 

With these solutions [(lo) and (1 l)] and the standard 
beam propagation laws, we can determine the beam pa- 
rameters of the allowed mode everywhere in space. In 
particular, we obtain for the spot size wi,cm and radius of 
curvature pi,cm of the beam incident on the conventional 
mirror 

and 

( 12b) 
After reflection from the conventional mirror, the new spot 
size wr,cm and radius of curvature pr,cm of the beam at the 
conventional mirror will be given by 

Wr,cm = Wi,cm (13a) 

and 

( 13b) 
Note that at the conventional mirror, the spot size is con- 
tinuous on reflection and the radius of curvature of the 
mode is discontinuous on reflection. In general, the wave- 
front curvature of the mode at the conventional mirror 
does not match the curvature R of the conventional mir- 
ror; however, the wavefront curvature does approach the 
curvature of the conventional mirror in the limit of large 
values of a or when the cavity length L approaches R .  
Note, also, that these solutions [( 12) and (13)] are slightly 
different from the solutions obtained for a phase-conju- 
gate resonator modeled with a conventional mirror and an 
“ideal” PCM with a Gaussian filter placed in front of it 

In Fig. 1, we show phase-conjugate resonators with 
conventional mirrors having different curvatures. In Fig. 
1 (a), (b) and (c), we show the mode for the case of a very 
large phase-conjugate mirror ( a  -+ a) with a flat, con- 
vex, and concave conventional mirror, respectively. In 
Fig. l(d), we show the mode structure of a phase-conju- 
gate resonator having a flat conventional mirror and with 
a finite width a of the Gaussian reflectivity profile. In this 
case, the mode consists of left- and right-going beams 
having different beam parameters, as shown by the solid 
lines. The dashed lines in Fig. l(d) depict the virtual beam 
waist of the left-going beam in the resonator. 

In Figs. 2, 3, and 4, we show graphically the location 
of the beam waist measured with respect to the location 
of the PCM, and the spot size of the beam waist as a 

WI, ~ 2 1 ,  [141, 1181. 

PCM flat mlrror 

PCM convex mlrror 

PCM concave mirror 

(d) -1 
PCM flat mirror 

Fig. 1. Phase-conjugate resonators consisting of a phase-conjugate mirror 
(PCM) and an (a) flat, (b) convex, and (c) concave conventional mirror. 
In (d), the PCM has a Gaussian reflectivity profile of width 2a. Conse- 
quently, the oscillating mode of this resonator consists of left- and right- 
going beams having different beam parameters, shown by the solid lines. 
The dashed lines depict the virtual beam waist of the left-going beam. 

I I I I 

0 20 
cavity length (cm) 

Fig. 2. (a) Beam waist location measured with respect to the location of 
the phase-conjugate mirror and (b) beam waist diameter plotted versus 
cavity length for a phase-conjugate resonator consisting of a flat conven- 
tional mirror and a PCM with Gaussian reflectivity profiles a = m and 
a = 0.01 cm for a wavelength of 0.5 pm. For a = 03, the left- and right- 
going beams are identical, and the plots are labeled by a. For a = 0.01 
cm, the plot for the right-going beam is indicated by the right arrow, and 
the plot for the left-going beam is indicated by the left arrow. 

function of cavity length for three different phase-conju- 
gate resonators for X = 0.5 pm and with conventional 
mirror radii of curvature equal to 00, - 10 cm and + 10 
cm, respectively. In each case, we show the waist loca- 
tion and size for the two Gaussian beams in the resonator, 
the right-going beam (right arrow) and left-going beam 
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Fig. 3.  Same as Fig. 2, but for a conventional mirror with a - 10 cm radius 
of curvature. 
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Fig. 4. Same as Fig. 2, but for a conventional mirror with a + 10 cm radius 
of curvature. 

(left arrow), for values of the Gaussian reflectivity profile 
of width a = 03 and a = 0.01 cm. For the case a = 03, 
the right- and left-going beams are identical. 

In general, there are other possible modes such as off- 
axis modes that reproduce in two roundtrips; however, 
these modes are neglected here since they have a higher 
loss due to the assumed reflectivity profile, and hence, are 
not expected to be present in our experimental oscillator. 

The above derivation of the allowed modes of a phase- 
conjugate resonator assumed oscillation of the lowest or- 
der Gaussian mode. To examine the effects of the higher 
order Hermite-Gaussian modes, we calculate the round- 
trip diffraction losses for these modes. These Hermite- 
Gaussian modes have the form 

cavity length (cm) 

Fig. 5 .  Mode loss per roundtrip plotted versus cavity length for the three 
Hermite-Gaussian modes with nrn = 00, 10, and 20 for a phase-conju- 
gate resonator with a conventional mirror radius of curvature equal to 
(a) infinity, (b) -10 cm, and (c) + I 0  cm, and a PCM with Gaussian 
reflectivity profile a = 0.1 cm for a wavelength of 0.5 pm. 

where I/ is the complex spot size [24] and an, is the am- 
plitude of mode nm. The amplitude of this mode will de- 
crease after one roundtrip through the cavity by the ratio 
[51, ~ 5 1  

where is the initial mode amplitude and is the 
final mode amplitude after the roundtrip through the cav- 
ity. The geometrical loss per roundtrip is then given by 
L,,, = 1 - unm,f/anm,l and depends on the loss for the 
lowest order mode. For the three resonators studied, the 
geometrical losses for modes nm = 00, 10, and 20 are 
shown graphically in Fig. 5 for a wavelength X = 0.5 pm 
and for a Gaussian reflectivity profile of width a = 0.1 
cm. We see from (15) that for the case of large a or when 
the cavity length equals the conventional mirror radius of 
curvature ( g  = 0), the losses for all modes are equal. For 
these cases, the resonator cannot discriminate against 
higher order modes, and higher order modes may be im- 
portant in the analysis. In addition to the above consid- 
erations, in the experiment to be discussed, mode dis- 
crimination is enhanced by the fact that the PCM is only 
reflecting for approximately 10 ns, allowing only the low- 
est loss modes time to build up from noise. 
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EXPERIMENT 

Experimental studies of the mode properties of a phase- 
conjugate oscillator were performed on an oscillator in- 
corporating a PCM based on Brillouin-enhanced four- 
wave mixing [21], [22]. The experimental setup for this 
phase-conjugate oscillator is shown in Fig. 6. The for- 
ward pump at frequency w for the four-wave mixing pro- 
cess is generated by a Q-switched frequency-doubled 
Nd : YAG laser producing about 25 mJ of energy in a 10 
ns pulse width, with a 2 mm diameter spot size (measured 
to the 1 /e2 intensity point) at the front window of the CS2 
four-wave mixing cell. The backward pump wave is gen- 
erated by a stimulated Brillouin scattering PCM filled with 
the liquid glycerol and has a frequency (w-2Q) shifted 
downward by twice the Brillouin frequency shift (a) of 
the four-wave mixing medium (CS,). With this choice of 
frequencies for the four-wave mixing process, gain is pro- 
duced at the frequency w-Q due to a four-wave mixing 
process that is mediated by intense acoustic waves. The 
forward pump wave for the four-wave mixing process has 
an intensity near the stimulated Brillouin scattering 
threshold for CS2. The weak stimulated Brillouin scatter- 
ing generated by this forward pump wave provides the 
seed photons at the Stokes-shifted frequency a-Q to ini- 
tiate oscillation between the PCM and the conventional 
mirror. The pump waves used for the four-wave mixing 
PCM were TEMW Gaussian, which produced a PCM with 
a Gaussian reflectivity profile in the transverse direction 
with a = 0.1 cm. The PCM has a reflectivity greater than 
100 percent and provides gain for the oscillator. Conven- 
tional mirrors with radii of curvature R = 00, -10 cm, 
and + 10 cm were used as output couplers for this phase- 
conjugate resonator, and cavity lengths were varied from 
approximately 5 to 20 cm. Short cavity lengths were lim- 
ited by the finite size of the PCM (the four-wave mixing 
cell had a length of 3 cm) and the optics required to form 
the oscillator. Long cavity lengths were limited by the 
number of roundtrips available for the oscillation to build 
up from noise. The duration of the PCM reflectivity was 
approximately equal to the pump laser pulse width (10 ns 
FWHM). Typically, fewer than ten roundtrips were avail- 
able for the oscillator to initiate from noise, sample the 
cavity, and form a cavity mode. The phase-conjugate os- 
cillator was operated slightly above threshold and was not 
optimized for efficiency; thus, the output energy from the 
oscillator was low (less than 10 pJ per pulse). The pulse 
width of the phase-conjugate oscillator was approxi- 
mately 5 ns and had a smooth temporal profile similar to 
the temporal profile of the pump laser. The spot sizes of 
the output beams from these oscillators were measured 
both in the near field and in the far field for several values 
of the cavity length. Fig. 7 shows the output beam diver- 
gences from the phase-conjugate oscillators studied. Fig. 
8 shows the near field spot sizes measured at a plane in- 
side the phase-conjugate oscillator. Typical error bars as- 
sociated with the spot size measurements are shown in 
each plot. These measurements are compared to the the- 

l l - 2 R  

glycerol 

Frequency = 2 R 

Brillouin Brillouin 

Frequency = R 

c s *  

I 
output 

Fig. 6. Experimental setup for a phase-conjugate oscillator consisting of 
a conventional mirror and an amplifying phase-conjugate mirror based 
on Brillouin-enhanced four-wave mixing. 

- E 5 r \  

1 

cavity length (ern) 

Fig. 7 .  Measured beam divergence plotted versus cavity length for a phase- 
conjugate oscillator with a conventional mirror radius of curvature equal 
to (a) infinity, (b) - 10 cm, and (c) + 10 cm. The solid curve shows the 
predictions of the theory presented in the text for a = 0.1 cm. 

oretical analysis above (solid line in the figures) assuming 
oscillation of the lowest order Gaussian mode and a >> 

For the case of a phase-conjugate oscillator with a flat 
conventional mirror, we see close agreement between the 
lowest order Gaussian mode theory and the experimental 
measurements for long cavity lengths [Figs. 7(a) and 
@a)]. For shorter cavity lengths, however, the divergence 
is greater than the prediction of the lowest order mode 
theory, suggesting that multitransverse-mode oscillation 
is occurring. For shorter cavity lengths, the losses for 
higher order modes are lower (see Fig. 5 ) ,  and in addi- 
tion, there are more roundtrips through the oscillator dur- 
ing which higher order modes can grow. Hence, the beam 
divergence for short cavity lengths may have contribu- 
tions from the presence of higher order modes. 

Wi,pcrn- 
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Fig. 8. Near field spot size measured at a fixed plane inside the phase- 
conjugate oscillator plotted versus cavity length for a conventional mir- 
ror radius of curvature equal to (a) infinity, (b) - 10 cm, and (c) + 10 
cm. The solid curve shows the predictions of the theory presented in the 
text for a = 0. I cm. 

For the case of a phase-conjugate oscillator with a - 10 
cm radius of curvature, we see better agreement between 
the output beam measurements and the low-order mode 
theory for all cavity lengths [Figs. 7(b) and 8(b)]. For 
short cavity lengths, in this case, the additional losses for 
the higher order modes (see Fig. 5) may be sufficient to 
prevent these modes from building up. 

Finally, for the case of a phase-conjugate oscillator with 
a + 10 cm radius-of-curvature conventional mirror, we see 
that for all cavity lengths, the output beam divergence is 
greater than that of a lowest order Gaussian mode. Also, 
when the cavity length equals the radius of curvature of 
the conventional mirror, the beam waist is located inside 
the PCM (see Fig. 4), the beam waist diameter becomes 
very small, and the losses for all modes are equal [see 
Fig. 5(c)]. Hence, for the case when the cavity length is 
approximately equal to the radius of curvature of the con- 
ventional mirror, there is little or no mode discrimination, 
and we expect nondiffraction-limited output from the os- 
cillator. We see from Figs. 7(c) and 8(c) that the output 
beam divergence exceeds the fundamental-mode beam di- 
vergence by a factor of approximately three, suggesting 
that approximately ten modes are oscillating. 

For all of our oscillators, we have measured the cavity 
length from the center of the 3 cm four-wave mixing cell 
used as the PCM. This definition of the cavity length is 
consistent with that used by other authors [12], [15] and 

gives the best fit to the data, as can be seen for the case 
of the cavity length equal to the radius of curvature of the 
conventional mirror [Fig. 7(c)]. 

In conclusion, we have operated several phase-conju- 
gate oscillators consisting of a conventional mirror and a 
PCM with gain based on Brillouin-enhanced four-wave 
mixing. We have measured the output beam parameters 
of these oscillators both in the near and far fields for var- 
ious cavity lengths. We have calculated the allowed mode 
structure of these oscillators by assuming that the PCM 
had a Gaussian reflectivity profile in the transverse di- 
mension, and have compared our measurements to a the- 
oretical analysis that assumes oscillation of a low-order 
Gaussian mode. Good agreement between the theory and 
experiment is obtained when we consider the role of the 
higher order Hermite-Gaussian modes in these oscilla- 
tors. 
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